Saturday, July 30, 2011

rumus-rumus fisika

Rumus:
\!v=\frac{s}{t}
Dengan ketentuan:
  • \!s = Jarak yang ditempuh (m, km)
  • \!v = Kecepatan (km/jam, m/s)
  • \!t = Waktu tempuh (jam, sekon)
Catatan:
  1. Untuk mencari jarak yang ditempuh, rumusnya adalah \!s=\!v\times\!t.
  2. Untuk mencari waktu tempuh, rumusnya adalah \!t=\frac{s}{v}.
  3. Untuk mencari kecepatan, rumusnya adalah \!v=\frac{s}{t}.

Kecepatan rata-rata

Rumus:






\!v=\frac{s_{total}}{t_{total}} 


Gerak lurus berubah beraturan

Rumus GLBB ada 3, yaitu:
  • \!v_{t}=\!v_{0}+\!a\times\!t

  • \!s=\!v_{0}\times\!t+\frac{1}{2}\times\!a\times\!t^2

  • \!v_{t}^2=\!v_{0}^2+\!2\times\!a\times\!s
Dengan ketentuan:
  • \!v_{0} = Kecepatan awal (km/jam, m/s)
  • \!v_{t} = Kecepatan akhir (km/jam, m/s)
  • \!a = Percepatan (m/s2)
  • \!s = Jarak yang ditempuh (km, m)

Gerak vertikal

  • Kecepatan awal atau Vo = 0
  • Percepatan (a) = Gravitasi (g)
  • Jarak (s) = tinggi (h)

 

Massa jenis

ρ = m / v
Keterangan :
  • ρ = Massa jenis (kg/m3)
  • m = massa (kg)
  • v = volume (m3)

Pemuaian

Muai panjang

Rumus:
\!L_{t}=\!L_{0}(\!1+\alpha\times\Delta t)
  • \!L_{t} = panjang akhir (m, cm)
  • \!L_{0} = panjang awal (m, cm)
  • α = koefisien muai panjang (/°C)
  • Δt = perbedaan suhu (°C)

 Muai luas

Rumus:
\!A_{t}=\!A_{0}(\!1+\beta\times\Delta t)
Keterangan:
  • \!A_{t} = luas akhir (m2, cm2)
  • \!A_{0} = luas awal (m2, cm2)
  • β = \!2\alpha = koefisien muai luas (/°C)
  • Δt = selisih suhu (°C)

] Muai volume

Rumus:
\!V_{t}=\!V_{0}(\!1+\gamma\times\Delta\!t)
Keterangan:
  • \!V_{t} = volume akhir (m3, cm3)
  • \!V_{0} = volume awal (m3, cm3)
  • γ = \!3\alpha = koefisien muai volume (/°C)
  • Δt = selisih suhu (°C)

 

Kalor

Kalor adalah bentuk energi yang berpindah karena perubahan suhu (Δt).

Kalor jenis

Rumus:
\!Q=\!m\times\!c\times\Delta\!t
dengan ketentuan:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!m = Massa zat (Gram, Kilogram)
  • \!c = Kalor jenis (Joule/kilogram°C, Joule/gram°C, Kalori/gram°C)
  • \Delta\!t = Perubahan suhu (°C) → (t2 - t1)
Untuk mencari kalor jenis, rumusnya adalah:
\!c=\frac{Q}{\!m\times\Delta\!t}
Untuk mencari massa zat, rumusnya adalah:
\!m=\frac{Q}{\!c\times\Delta\!t}

Kapasitas kalor

Kapasitas kalor adalah banyaknya kalor yang dibutuhkan oleh benda untuk menaikkan suhunya 1°C.
Rumus kapasitas kalor:
\!H=\frac{Q}{\Delta\!t}

\!H=\frac{\!m\times\!c\times\Delta\!t}{\Delta\!t}

\!H=\!m\times\!c
dengan syarat:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!H = Kapasitas kalor (Joule/°C)
  • \!m = Massa zat (Gram, Kilogram)
  • \!c = Kalor jenis (Joule/kilogram°C, Joule/gram°C, Kalori/gram°C)
  • \Delta\!t = Perubahan suhu (°C) → (t2 - t1)
contoh soal: sebuah zat dipanaskan dari suhu 10°C menjadi 35°C. Kalor yang dikeluarkan adalah 5000 Joule. Jika masa zat adalah 20 kg. Berapakah kalor jenis dan kapasitas kalor zat tersebut? Jawab  : Diketahui:
t1 =10°C
          t2 =35°C
          Q  =5000 J
          m  =20 kg
Ditanya  :b. Kapasitas kalor (H)
a. kalor jenis (c)
           delta t = t2-t1
                  = 35°-10°
                  = 25°
        c  = Q/m × delta t
        c  = 5000/20 × 25
        c  =250 ×25
        c  =6250 J/kg C°
H = m × c
   = 20kg × 6250 J/kg C°
   = 125000 J/ C°

Kalor lebur

Rumus:
\!Q=\!m\times\!L
dengan ketentuan:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!m = Massa zat (Gram, Kilogram)
  • \!L = Kalor lebur zat (Joule/kilogram, Kilojoule/kilogram, Joule/gram)

Kalor uap

Rumus:
\!Q=\!m\times\!U
dengan ketentuan:
  • \!Q = Kalor yang diterima suatu zat (Joule, Kilojoule, Kalori, Kilokalori)
  • \!m = Massa zat (Gram, Kilogram)
  • \!U = Kalor uap zat (Joule/kilogram, Kilojoule/kilogram, Joule/gram)
Contoh Soal :
Berapa energi kalor yang diperlukan untuk menguapkan 5 Kg air pada titik didihnya, jika kalor uap 2.260.000 Joule/Kilogram ?
Jawab :
Diketahui  : m = 5 Kg
             U = 2.260.000 J/Kg

Ditanyakan : Q =..... ?

Jawab Q = m x U
        = 5 Kg x 2.260.000 J/Kg
        = 11.300.000 J
        = 11,3 x 106 J

Asas Black

Rumus:
\!Q_{terima}=\!Q_{lepas} Asas Black : Jumlah kalor yang diterima sama dengan jumlah kalor yang dilepas..

Gaya dan tekanan

seseorang memiliki massa 60kg.jika percepatan gravitasi bumi 10m/s² dan percepatan gravitasi bulan 16m/s².hitunglah brat orang tersebut di bumi dan bulan?
Jawaban: Bagaimana menghitung berat seseorang di lain tempat
Rumus= Berat(W)= Massa (M) X Percepatan Gravitasi (G)
               
        A. Berat di bumi
           W=Mxg
           W=60kgx10= 600 Newton
       
        B. Berat di Bulan
           W=Mxg
           W=60kgx16=960N

Usaha

W = F x S
dimana ; W = usaha (newton/m) F = gaya (newton) S = jarak (meter)

F = m x a
dimana ; a = percepatan m = massa
S = v0 + 1/2 a x t
dimana ; v0 = kcepatan awal t = waktu kos0ng ny itu

Getaran, gelombang dan bunyi

Periode dan Frekuensi Getaran

 Periode Getaran


Dengan ketentuan:
  • \!T = Periode (sekon)
  • \!t = Waktu (sekon)
  • \!n = Jumlah getaran

Frekuensi Getaran

\!f=\frac{n}{t}

Dengan ketentuan:
  • \!f = Frekuensi (Hz)
  • \!n = Jumlah getaran
  • \!t = Waktu (sekon)

Periode Getaran

\!T=\frac{1}{f}

Dengan ketentuan:
  • \!T = periode getaran (sekon)
  • \!f = frekuensi(Hz)

Hubungan antara Periode dan Frekuensi Getaran

Terdapat 2 rumus, yaitu:
  • \!T=\frac{1}{f}
  • \!f=\frac{1}{T}
Dengan ketentuan:
  • \!T = periode (sekon)
  • \!f = frekuensi (Hz

Alat optik


Lup (Kaca Pembesar)

Pembesaran bayangan saat mata berakomodasi maksimum

\!M=\frac{Sn}{f}+1
Dengan ketentuan:
  • \!M = Pembesaran
  • \!Sn = Titik dekat (cm)
  • \!f = Fokus lup (cm)

Pembesaran bayangan saat mata tidak berakomodasi

\!M=\frac{Sn}{f}
Dengan ketentuan:
  • \!M = Pembesaran
  • \!Sn = Titik dekat (cm)
  • \!f = Fokus lup (cm)

 Mikroskop

Pembesaran mikroskop adalah hasil kali pembesaran lensa objektif dan pembesaran lensa okuler, sehingga dirumuskan:
Mmik=Mob\times Mok

Karena lensa okuler mikroskop berfungsi seperti lup, pembesaran mikroskop dirumuskan sebagai berikut:

Pembesaran Mikroskop pada saat mata berakomodasi maksimum

Mmik=Mob\times(\frac{Sn}{fok}+1)=(\frac{S'ob}{Sob})\times(\frac{Sn}{fok}+1)
Agar mata berakomodasi maksimum, jarak lensa objektif dan lensa okuler dirumuskan:
d=S'ob+Sok=S'ob+\frac{Sn\times fok}{Sn+fok}
Dengan ketentuan:
  • \!Mmik = Pembesaran mikroskop
  • \!Mob = Pembesaran oleh lensa objektif
  • \!Sn = Titik dekat mata
  • \!fok = Jarak fokus lensa okuler
  • \!S'ob = jarak bayangan oleh lensa objektif
  • \!Sob = jarak benda di depan lensa objektif
  • \!d = jarak lensa objektif dan lensa okuler

Pembesaran Mikroskop pada saat mata tidak berakomodasi

Mmik=Mob\times \frac{Sn}{fok}=\frac{S'ob}{Sob}\times \frac{Sn}{fok}
Agar mata berakomodasi maksimum, jarak lensa objektif dan lensa okuler dirumuskan:
d=S'ob+fok\,\!
Dengan ketentuan:
  • \!Mmik = Pembesaran mikroskop
  • \!Mob = Pembesaran oleh lensa objektif
  • \!Sn = Titik dekat mata
  • \!fok = Jarak fokus lensa okuler
  • \!S'ob = jarak bayangan oleh lensa objektif
  • \!Sob = jarak benda di depan lensa objektif
  • \!d = jarak lensa objektif dan lensa okuler

Teropong Bintang

 Pembesaran Teropong Bintang pada saat mata tidak berakomodasi

M=\frac{fob}{fok}
Agar mata berakomodasi maksimum, jarak lensa objektif dan lensa okuler dirumuskan:
d=fob+fok\,\!
Dengan ketentuan:
  • \!d = Jarak lensa objektif dan lensa okuler
  • \!M = Pembesaran teropong bintang
  • \!fob = Jarak fokus lensa objektif
  • \!fok = Jarak fokus lensa okuler

Pembesaran Teropong Bintang pada saat mata berakomodasi maksimum

M=\frac{fob}{sok}
Agar mata berakomodasi maksimum, jarak lensa objektif dan lensa okuler dirumuskan:
d=fob+sok\,\!

Dengan ketentuan:
  • \!M = Pembesaran teropong bintang
  • \!fob = Jarak fokus lensa objektif
  • \!sok = jarak benda di depan lensa okuler

Teropong Bumi

Pembesaran Teropong Bumi

M=\frac{fob}{fok}
Dengan ketentuan:
  • \!M = Pembesaran teropong bumi
  • \!fob = Jarak fokus lensa objektif
  • \!fok = Jarak fokus lensa okuler

Jarak lensa objektif dan lensa okuler

d=fob+4fp+fok\,\!
Dengan ketentuan:
  • \!d = Jarak lensa objektif dan lensa okuler
  • \!fob = Jarak fokus lensa objektif
  • \!fp = Jarak fokus lensa pembalik
  • \!fok = Jarak fokus lensa okuler

 

HUKUM KIRCHOFF I : jumlah arus menuju suatu titik cabang sama dengan jumlah arus yang meninggalkannya.

S Iin = Iout
HUKUM KIRCHOFF II : dalam rangkaian tertutup, jumlah aljabar GGL (e) dan jumlah penurunan potensial sama dengan nol.

Se = S IR = 0
ALAT UKUR LISTRIK TERDIRI DARI

1. JEMBATAN WHEATSTONE


digunakan untuk mengukur nilai suatu hambatan dengan cara mengusahakan arus yang mengalir pada galvanometer = nol (karena potensial di ujung-ujung galvanometer sama besar). Jadi berlaku rumus perkalian silang hambatan :
R1 R3 = R2 Rx
2. AMPERMETER


untuk memperbesar batas ukur ampermeter dapat digunakan hambatan Shunt (Rs) yang dipasang sejajar/paralel pada suatu rangkaian.
Rs = rd 1/(n-1)
n = pembesaran pengukuran
3. VOLTMETER

untuk memperbesar batas ukur voltmeter dapat digunakan hambatan multiplier (R-) yang dipasang seri pada suatu rangkaian. Dalam hal ini R. harus dipasang di depan voltmeter dipandang dari datangnya arus listrik.
Rm = (n-1) rd
n = pembesaran pengukuran
TEGANGAN JEPIT (V.b) :
adalah beda potensial antara kutub-kutub sumber atau antara dua titik yang diukur.

1. Bila batere mengalirkan arus maka tegangan jepitnya adalah:

Vab = e - I rd

2. Bila batere menerima arus maka tegangan jepitnya adalah:
 Vab = e + I rd

3. Bila batere tidak mengalirkan atau tidak menerima arus maka
    tegangan jepitnya adalah .

 Vab = e


Dalam menyelesaian soal rangkaian listrik, perlu diperhatikan :

1. Hambatan R yang dialiri arus listrik. Hambatan R diabaikan jika tidak
    dilalui arus listrik.

2. Hambatan R umumnya tetap, sehingga lebih cepat menggunakan
    rumus yang berhubungan dengan hambatan R tersebut.

3. Rumus yang sering digunakan: hukum Ohm, hukum Kirchoff, sifat
    rangkaian, energi dan daya listrik.

Contoh 1 :

Untuk rangkaian seperti pada gambar, bila saklar S1 dan S2 ditutup maka hitunglah penunjukkan jarum voltmeter !
Jawab :
Karena saklar S1 dan S2 ditutup maka R1, R2, dan R3 dilalui arus listrik, sehingga :
 1    =  1  +  1 
Rp       R2    R3

Rp = R2 R3 = 2W
      R2 + R1
V = I R = I (R1 + Rp)

I = 24/(3+2) = 4.8 A

Voltmeter mengukur tegangan di R2 di R3, dan di gabungkan R2 // R3, jadi :
V = I2 R2 = I3 R3 = I Rp
V = I Rp = 0,8 V

Contoh 2:
Pada lampu A dan B masing-masing tertulis 100 watt, 100 volt. Mula-mula lampu A den B dihubungkan seri dan dipasang pada tegangan 100 volt, kemudian kedua lampu dihubungkan paralel dan dipasang pada tegangan 100 volt. Tentukan perbandingan daya yang dipakai pada hubungan paralel terhadap seri !

Hambatan lampu dapat dihitung dari data yang tertulis dilampu :
RA = RB = V²/P = 100²/100 = 100 W

Untuk lampu seri : RS = RA + RB = 200 W
Untuk lampu paralel : Rp = RA × RB = 50 W
                                    RA + RB
Karena tegangan yang terpasang pada masing-masing rangkaian sama maka gunakan rumus : P = V²/R

Jadi perbandingan daya paralel terhadap seri adalah :
Pp = : = Rs = 4
Ps    Rp    Rs    Rp    1

Contoh 3:
Dua buah batere ujung-ujungnya yang sejenis dihubungkan, sehingga membentuik hubungan paralel. Masing-masing batere memiliki GGL 1,5 V; 0,3 ohm dan 1 V; 0,3 ohm.Hitunglah tegangan bersama kedua batere tersebut !
Jawab :
Tentakan arah loop dan arah arus listrik (lihat gambar), dan terapkan hukum Kirchoff II,
Se + S I R = 0
e1 + e2 = I (r1 + r2)

I = (1,5 - 1) = 5  A
    0,3 + 0,3    6

Tegangan bersama kedua batere adalah tegangan jepit a - b, jadi :

Vab = e1 - I r1 = 1,5 - 0,3 5/6 = 1,25 V

1= e2 + I R2 = 1 + 0,3 5/6 = 1,25 V

Contoh 4:

Sebuah sumber dengan ggl = E den hambatan dalam r dihubungkan ke sebuah potensiometer yang hambatannya R. Buktikan bahwa daya disipasi pada potensiometer mencapai maksimum jika R = r.
Jawab :

Dari Hukum Ohm : I = V/R =       e    
                                     R+r

Daya disipasi pada R : P = I²R =        e  ²R  
                                           (R+r)²
Agar P maks maka turunan pertama dari P harus nol: dP/dR = 0 (diferensial parsial)

Jadi e² (R+r)² - E² R.2(R+r) = 0
               (R+r)4
e² (R+r)² = e² 2R (R+r) Þ R + r = 2R
                                        R = r (terbukti)